太阳集团游戏官方网址_www.20056.com|试玩入口

加入收藏 | 设为首页 |      中文 |

咨询热线: 028-85121781

当前位置:首页 > 动态中心 > 科研动态 J Mater Chem B:加热可让化疗药物更有效杀死癌细胞
J Mater Chem B:加热可让化疗药物更有效杀死癌细胞
[ 来源:www.20056.com   发布日期:2021-01-11 10:22:14  责任编辑:  浏览次 ]


在一项新的研究中,来自英国伦敦大学学院的研究人员报道在用化疗药物靶向癌细胞的同时加热它们是一种非常有效地杀伤它们的方法。他们发现将化疗药物“加载”到微小的磁性纳米颗粒上,在给癌细胞递送这种药物的同时,利用这些磁性颗粒加热这些癌细胞摧毁它们的效果要比不加热时高出34%。相关研究结果发表在Journal of Materials Chemistry B期刊上。



图片来自Journal of Materials Chemistry B /Nguyen T. K. Thanh / Florian Aubrit/ Olivier Sandre/ Lilin Wang


携带化疗药物的磁性氧化铁纳米颗粒在暴露于交变磁场(alternating magnetic field)中时,会散发热量。这意味着,一旦这些纳米颗粒在肿瘤区域积聚,就可以从体外施加交变磁场,让热量和化疗药物同时递送。


这两种治疗方法的效果是协同的--也就是说,其中的一种治疗方法都能增强另一种治疗方法的效果,这意味着它们结合起来比分开的时候更有效。这项研究是在实验室的细胞中进行的,在开展涉及患者的临床试验之前还需要进一步研究。


论文资深作者、伦敦大学学院物理与天文学生物物理组的Nguyen T. K.Thanh教授说,“我们的研究显示了通过磁性纳米颗粒进行化疗和热处理相结合的巨大潜力。虽然这种组合疗法已经被批准用于治疗快速生长的胶质母细胞瘤,但我们的研究结果表明,它有可能作为一种广泛的抗癌疗法得到大量使用。这种组合疗法也有可能通过确保它更有效地靶向癌细胞而不是健康组织,减少化疗药物的副作用。这需要在进一步的临床前测试中进行探索。”


在这项新的研究中,这些研究人员将这种磁性纳米颗粒与一种常用的化疗药物阿霉素(doxorubicin)结合起来,并比较了这种组合物在不同情景下对人类乳腺癌细胞、胶质母细胞瘤细胞和小鼠前列腺癌细胞的影响。


在最成功的情形下,他们发现48小时后,加热和阿霉素一起杀死了98%的胶质母细胞瘤细胞,而在没有加热的情形下,阿霉素杀死了73%的胶质母细胞瘤细胞。与此同时,对于乳腺癌细胞,加热和阿霉素一起杀死了89%的乳腺癌细胞,而单用阿霉素48小时后杀灭77%的乳腺癌细胞。


癌细胞比健康细胞更容易受加热的影响---一旦温度达到42℃,它们就会发生缓慢的死亡(凋亡),而健康细胞则能承受高达45℃的温度。这些研究人员发现,只将癌细胞加热几度,达到40℃,就能增强化疗药物的效果,这意味着这种治疗在低剂量的纳米颗粒下可能有效。

他们发现,当这种纳米颗粒被癌细胞吸收或内化时,这种组合疗法最为有效,但是他们发现,当这种纳米颗粒留在癌细胞外散发热量而时,化疗药物的效果也会增强(这将是一种更容易提供的治疗形式)。然而,只有当这种氧化铁纳米颗粒被内化或紧密沉积到癌细胞表面时,才会在较低温度下产生效果。


这种纳米颗粒还有一层聚合物涂层,可以阻止化疗药物渗出到健康组织中。该涂层对热和pH值敏感,当温度上升时才会释放化疗药物,这种纳米颗粒被内化在癌细胞中称为“溶酶体”的微小口袋内,这种微小口袋的pH值低于细胞介质的其他部分。这种细胞内递送化疗药物的方式对小鼠前列腺癌细胞特别有效,特别是当温度达到42℃时,表现出优越的、协同的细胞死亡效果。


论文共同作者、法国波尔多大学的Olivier Sandre博士说,“鉴于交变磁场可以产生热量,化疗药物的释放可以高度局限于癌细胞,从而潜在地减少副作用。”



上一篇:Cell Rep:揭示恶性前列腺癌亚型对疗法产生耐受性的新型分子机制
下一篇:Nat Cancer:脑癌与组织修复之间的关系
【相关资讯】
·Hepatology:研究揭示肝癌CAF的细胞起源 2021-04-09
·Cell:工程化免疫细胞可靶向抑制癌细胞转移 2021-04-08
·Cancer Cell:肠道菌群如何导致结直肠癌向肝脏的转移? 2021-04-07
·Nat Commun:调控肺癌细胞KRAS信号传递的内在机制 2021-04-06
·Science子刊:科学家揭示抑制FGD5可降低癌症干细胞的自我更细能力 2021-04-02
·Nature子刊:揭示恩杂鲁胺对前列腺癌的耐药新机制 2021-04-01
·Cell子刊:抑制酶活性提高免疫疗效 2021-03-31
·Nat Immunol:免疫细胞中发现关键癌症靶点 2021-03-30